top of page

3-Ketosteroid D1-dehydrogenases

Steroids are ubiquitous contamination of water and soil environments and serve as a carbon and energy source for many microorganisms. Their degradation was observed in sseveral species from Actinobacteria and Proteobacteria, especially for the members of the genus Rhodococcus. Likewise, pathogenic microorganisms of eukaryotic host like Mycobacterium tuberculosis developed the ability for steroid degradation or modification. For all steroid degraders one of the key enzymes in a catabolic pathway is flavin adenine dinucleotide (FAD)-dependent 3-ketosteroid Δ1-dehydrogenase (KstD), which catalyzes

1,2-dehydrogenation of androst-4-en-3,17-dione (AD) to androst-1,4-dien-3,17-dione (ADD). 

schematic representation of 1,2-dehydrogenation catalyzed by KstD. Here double bond is introduced into androsteridione between C1 and C2, the enzyme gets reduced and FAD is reoxidized by DCPIP

Fig. 1. The catalytic 1,2-dehydrogenation catalyzed by KstD (AcmB) from S. denitrificans.

In our lab, we study biocatalytic properties of several KstD from Sterolibacterium denitrificans Chol-1, Rhodococcus erythropolis, and Pseudomonas putida.  We are interested both in fundamental studies of the reaction mechanism as well as in the application of these enzymes to the synthesis of 1-dehydrosteroids. To achieve the former goal we mainly characterize these enzymes with kinetic studies (steady-state and pre-steady state stopped-flow kinetics, measurement of kinetic isotope effects), introduce mutations into crucial residues in the active site, study structure with spectroscopic and crystalographic techniques, as well as apply a range of theoretical methods to describe the energetics of the catalytic process (MD, QM:MM and QM:MM MD). 

The former goal is pursued by reaction engineering, enzyme immobilization and whole-cell reactor tests, coupled with a wide screening of potential new substates that are not physiologically converted by KstD enzymes. 

​

These studies were conducted with the financial support of two grants from National Science Center Poland: OPUS 2016/21/B/ST4/03798 "The mechanism of regioselective oxidative dehydrogenation of 3-ketosteroids catalyzed by Δ1-cholest-4-en-3-one dehydrogenase from Sterolibacterium denitrificans", Miniatura 2018/02/X/ST4/01963 "Searching for novel bacterial ketosteroid dehydrogenases for oxidative dehydrogenation of steroids" as well as statutory funds of ICSC PAS. Currently, the research is supported by the ICSC PAS Development Grant entitled "Enzymatic synthesis of biologically active regioselectively dehydrogenated triterpenes and sterols”.

​

Publications on the topic:

  1. K. Sofinska, A. M. Wojtkiewicz, P. Wójcik, O. Zastawny, M. Guzik, A. Winiarska, P. Waligórski, M. CieÅ›la, J. Barbasz, M. Szaleniec, "Investigation of quaternary structure of aggregating 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans: In the pursuit of consensus of various biophysical techniques", Biochim. Biophys. Acta-Gen. Subj., 1863 (2019) 1027-1039

  2. M. Tataruch, P. Wójcik, A. M. Wojtkiewicz, K. Zaczyk, K. SzymaÅ„ska, M. Szaleniec, "Application of Immobilized Cholest-4-En-3-One Δ1-Dehydrogenase from Sterolibacterium Denitrificans for Dehydrogenation of Steroids", Catalyst, 10(12) (2020) 1460

  3. A. M. Wojtkiewicz, P. Wójcik, M. Procner, M. Flejszar, M. Oszajca, M. HochoÅ‚owski, M. Tataruch, B. MrugaÅ‚a, T. Janeczko, M. Szaleniec, "The efficient Δ1-dehydrogenation of a wide spectrum of 3-ketosteroids in a broad pH range by 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans", J. Steroid Biochem. Mol. Biol., 202 (2020) 105731

  4. P. Wójcik, M. Glanowski, A. M. Wojtkiewicz, A. Rohman, M. Szaleniec, "Universal capability of 3‑ketosteroid Δ1‑dehydrogenases to catalyze Δ1‑dehydrogenation of C17‑substituted steroids", Microb. Cell Fact., 20 (2021) 119

  5. M. Glanowski, P. Wójcik, M. Procner, T. Borowski, D. Lupa, P. Mielczarek, M. Oszajca, K. Åšwiderek, V. Moliner, A.J. Bojarski, M. Szaleniec, "Enzymatic Δ1‑Dehydrogenation of 3‑Ketosteroids - Reconciliation of Kinetic Isotope Effects with the Reaction Mechanism", ACS Catal., 11 (2021) 8211−8225

  6. P. Wojcik, M. Glanowski, B. Mrugala, M. Procner, O. Zastawny, M. Flejszar, K. Kurpiewska, E. Niedzialkowska, W. Minor, M. Oszajca, A. J. Bojarski, A. Wojtkiewicz, M. Szaleniec, “Structure, Mutagenesis, and QM:MM Modeling of 3-Ketosteroid Δ1-Dehydrogenase from Sterolibacterium denitrificans - The Role of a New Putative Membrane-Associated Domain and Proton-Relay System in Catalysis”, Biochemistry 62 (2023) 808-823

  7. A. Panek, A., P. Wójcik, A. Åšwizdor, M. Szaleniec, T. Janeczko, "Biotransformation of Δ1-Progesterone Using Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products’ Bioactivity.", Int. J. Mol. Sci. 2024, 25, 508. 

​

Patents and patent applications:

  1. P. Wójcik, A. M. Wojtkiewicz, M. Tataruch, J. Morzycki, M. Szaleniec, "Sposób wytwarzania (25R)-spirosta-1,4-dien-3-onu z diosgenonu", Polish Patent Application P.433249 (13.03.2020)

  2. A. Rugor, M. Szaleniec, T. Janeczko, M. Dymarska, E. Kostrzewa-SusÅ‚ow, "Sposób wytwarzania propionianu androst-1,4-dien-3-on-17-olu", Polish Patent P.413209

  3. A. Rugor, M. Szaleniec, T. Janeczko, M. Dymarska, E. Kostrzewa-SusÅ‚ow, "Sposób wytwarzania octanu androst-1,4,6-trien-3-on-17-olu", Polish Patent P.413207

  4. A. Rugor, M. Szaleniec, T. Janeczko, M. Dymarska, E. Kostrzewa-SusÅ‚ow, "Sposób wytwarzania 17a-metyloandrost-1,4-dien-3-on-17-olu", Polish Patent P.413208

 

Database submissions:

  1. M. Glanowski, P. Wójcik, M. Procner, T. Borowski, D. Lupa, P. Mielczarek, M. Oszajca, K. Åšwiderek, V. Moliner, A.J. Bojarski, M. Szaleniec (2021), “Enzymatic Δ1-dehydrogenation of 3-ketosteroids – Reconciliation of Kinetic Isotope Effects with the Reaction Mechanism”, Mendeley Data, V2, doi: 10.17632/ryczry3ntj.2

  2. AcmB structure PDB code 7P18

​

​

bottom of page